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Abstract
We propose a new mechanism for binding of two equally charged carriers
in a double-layer system subjected to a magnetic field of a special form. A
field configuration for which the magnetic fields in adjacent layers are equal in
magnitude and opposite in direction is considered. In such a field an additional
integral of motion—the momentum of the pair P—arises. For the case where in
one layer the carrier is in the zero (n = 0) Landau level while in the other layer
the carrier is in the first (n = 1) Landau level, the dependence of the energy of
the pair on its momentum E(P) is found. This dependence turns out to be a
nonmonotonic one: a local maximum and a local minimum appear, indicating
the emergence of a metastable bound state of two carriers with the same sign
of electrical charge.

1. Introduction

During the last ten years the possibility of measuring the effects caused by the interaction of
spatially separated carriers in low-dimensional systems has been demonstrated in a number of
experiments. Undoubted evidence for such effects was obtained in drag experiments in which
a voltage in one conducting layer caused by an electric current in the adjacent layer (separated
from the first one by a dielectric layer) was observed. Drag effects have been registered in
bilayer systems with conductivity of the same type in both layers (for instance, of the electron
type) [1–3] and in layers with conductivities of opposite types (electron type in one layer and
hole type in the other one) [4, 5]. In the last case the interaction between spatially separated
electrons and holes may result not only in a drag effect but also in an electron–hole pairing.
The electron–hole pairs may condense into a specific superfluid state in which a supercurrent
in one layer is accompanied by a supercurrent in the adjacent layer and these currents have the
same absolute value but the opposite directions [6, 7].
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The most favourable conditions for electron–hole pairing are achieved in the case where a
strong (quantizing) magnetic field perpendicular to the layers is applied to a bilayer electron–
hole [8–10] or electron–electron system [11, 12] (with the total filling factor νT = 1 in the last
case). The experimental discovery of the superfluidity of the pairs in such systems has already
been reported [13, 14].

The possibility of pairing of spatially separated electrons and holes looks quite natural
since there are Coulomb attraction forces between an electron and a hole. There is also an
unexpected and less obvious phenomenon: in a strong magnetic field the Coulomb repulsion
between spatially separated equally charged carriers may result in the formation of metastable
bound pairs. Such an effect occurs in a situation where the magnetic fields applied to the first
and the second layer of the bilayer electron (or hole) system are antiparallel to each other. This
possibility was predicted in our paper [15], where we assume that, together with the antiparallel
magnetic fields perpendicular to the layers, electric fields antiparallel to each other and parallel
to the conducting layers are applied to the system. The disadvantage of the situation considered
in [15] is that the presence of the electric fields may result in an instability of the system with
a macroscopic number of the pairs.

In this paper we show that the formation of a metastable bound state of spatially separated
electrons (or holes) can emerge without electric fields being applied to the system and formulate
the conditions for the appearance of such a bound state.

2. Electron–electron pairs in antiparallel magnetic fields

Let us consider two two-dimensional electron layers with the interlayer distance d embedded in
a dielectric matrix with the dielectric constant ε0. Let the magnetic field in the top layer (layer 1)
be B1 = (0, 0,−B) and the magnetic field in the bottom layer (layer 2) be B2 = (0, 0, B) (the
z axis is chosen perpendicular to the layers). A possible way of realizing such a configuration
of magnetic fields will be discussed at the end of the paper. We specify the case where there
is one electron belonging to the zero Landau level in layer 1 and one electron belonging to the
first Landau level in layer 2. In the symmetric gauge the vector potential in layer 1 is equal
to A1(r1) = (By1/2,−Bx1/2, 0) and that in layer 2 is A2(r2) = (−By2/2, Bx2/2, 0). The
Hamiltonian of a pair of interacting electrons has the form

H = H1 + H2 + VC(|r1 − r2|), (1)

where

H1 =
(

p1x + eB
2c y1

)2

2m1
+

(
p1y − eB

2c x1
)2

2m1
, (2)

H2 =
(

p2x − eB
2c y2

)2

2m2
+

(
p2y + eB

2c x2
)2

2m2
, (3)

VC = e2

ε0|r1 − r2| = e2

ε0

√
(x1 − x2)2 + (y1 − y2)2 + d2

. (4)

Here r1, r2 are the two-dimensional vectors. We set the electron charge equal to −e.
In a strong magnetic field the Bohr radii of the electrons a(1)

B = ε0h̄2/m1e2, a(2)
B =

ε0h̄2/m2e2 can be much larger than the magnetic length �B = (ch̄/eB)1/2. In this case the
Coulomb interaction can be taken into account as a perturbation. It is known that the quantum
problem of a particle in a quantizing magnetic field has a large degeneracy (in the symmetric
gauge with respect to the quantum number m, the z projection of the angular momentum).
Therefore, the common formulation of the theory of perturbations should be based on a solution
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of a secular equation. But such an approach is not an optimal method for the study of this
problem. Here we use another approach, taken from the quantum Hall theory [16]. In this
paper we use the method of [17], based on the projection of the Hamiltonian (1) into the
subspace of the states of the pair of electrons in which the electrons in the layers 1 and 2 are
frozen on the zero and the first Landau levels, respectively (this is exactly the same approach
as is used in the theory of the quantum Hall effect). Then the kinetic energy operator for the
electron in layer 1

H1 = �2
1x + �2

1y

2m1
= h̄ω1

(
a+

1 a1 +
1

2

)
(5)

is projected onto H̄1 = h̄ω1/2 (here and further the bar symbols indicate the projected
operators) which is constant. We will omit this constant in the further consideration. In (5)
ω1 = eB/m1c is the cyclotron frequency for the electron in layer 1, �1x ≡ p1x + eB

2c y1,
�1y ≡ p1y − eB

2c x1 are the electron kinematic momentum components, a+
1 = �B

h̄
√

2
(�1x − i�1y),

a1 = �B

h̄
√

2
(�1x + i�1y) are the creation and annihilation operators for the electron in layer 1.

It follows from the commutation relation for �1
i ([�1x,�1y] = ih̄2/�2

B) that [a, a+] = 1, as it
should. Analogously, for the electron in layer 2 one can find

H2 = �2
2x + �2

2y

2m2
= h̄ω2

(
a+

2 a2 +
1

2

)
(6)

and H̄2 = 3h̄ω2/2.
To project out the VC(|r1 − r2|) operator it is convenient to rewrite it in a Fourier-

representation form (we follow the procedure of [17]):

VC = e2

2πε0

∫
d2k

exp(−k|d|)
|k| exp(ikx(x1 − x2) + iky(y1 − y2)), (7)

where |k| =
√

k2
x + k2

y.

The coordinates of the electron in layer 1 can be presented as

x1 = X1 − �2
B

h̄
�1y, y1 = Y1 +

�2
B

h̄
�1x , (8)

where X1, Y1 are the coordinates of the centre of its orbit in the magnetic field. The operators
X1 and Y1 satisfy the following commutation relations: [X1, Y1] = −i�2

B. Beside that, X1 and
Y1 commute with the momenta components �1x and �1y. Analogously, for the electron in
layer 2 we have

x2 = X2 +
�2

B

h̄
�2y, y2 = Y2 − �2

B

h̄
�2x , (9)

where [X2, Y2] = i�2
B. Now the projection of the operator VC is reduced to the independent

projection of two commuting operators U1 and U2:

U1 ≡ exp

(
−ikx

�2
B

h̄
�1y + iky

�2
B

h̄
�1x

)
= exp

[
�B√

2
(ka+

1 − k̄a1)

]
, (10)

U2 ≡ exp

(
ikx

�2
B

h̄
�2y − iky

�2
B

h̄
�2x

)
= exp

[
�B√

2
(k̄a+

2 − ka2)

]
, (11)
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where the notation k ≡ kx + iky is used. The projection of these operators can be easily
performed:

Ū1 = 〈0|U1|0〉 = exp

(
−|k|2�2

B

4

)
,

Ū2 = 〈1|U2|1〉 = exp

(
−|k|2�2

B

4

)[
1 − |k|2�2

B

2

]
.

(12)

Substituting equation (12) into (7) we arrive at the following expression for the operator V̄C:

V̄C = e2

2πε0

∫
d2k

e−|k|d

|k| e−|k|2�2
B/2

[
1 − |k|2�2

B

2

]
eikx (X1−X2)+iky (Y1−Y2). (13)

Since the operators X1−X2 and Y1−Y2 commute with each other and with the Hamiltonian (1),
these operators are the integrals of motion. The appearance of the integrals of motion in the
problem considered is not accidental. The point is that Hamiltonian (1) and the Hamiltonian
of the electron–hole pair coincide with each other up to the sign of the Coulomb interaction. In
the last (electron–hole) case the integral of motion is the momentum of the pair P [18], which
is the eigenvalue of the operator

�P =
(

−ih̄
∂

∂r1
+

e

c
A1

)
+

(
−ih̄

∂

∂r2
− e

c
A2

)
− e

c
[B × (r1 − r2)]. (14)

In our problem the momentum of the pair P is also an integral of motion. Comparing
equation (14) with (8) and (9) we find the relation between the components of the operator of
the momentum �P and the operators X1 − X2 and Y1 − Y2:

Px = h̄

�2
B

(Y2 − Y1) and Py = − h̄

�2
B

(X2 − X1)

or �P = h̄

�2
B

(R2 − R1) × ez,

(15)

where ez is the unit vector in the z direction. Taking equation (15) into account we rewrite the
energy of the electron pair as the function of its momentum P:

�E01(P) = e2

2πε0

∫
d2k

e−|k|d

|k| exp

(
ikx�

2
B

h̄
Py − iky�

2
B

h̄
Px

)
exp

(
−|k|2�2

B

2

)(
1 − |k|2�2

B

2

)
.

(16)

Prior to analysing equation (16) we note the following.

(1) Using the method presented here one can also find the dependence of the energy of the
pair on its momentum P in a general case, when the electron in layer 1 is ‘frozen’ on the
n1th Landau level and the electron in layer 2 is frozen on the n2th level. The final result is

�En1n2(P) = e2

2πε0

∫
d2k

e−|k|d

|k| exp

(
ikx�

2
B

h̄
Py − iky�

2
B

h̄
Px

)

× exp

(
−|k|2�2

B

2

)
Ln1

( |k|2�2
B

2

)
Ln2

( |k|2�2
B

2

)
, (17)

where Ln(x) are the Laguerre polynomials.
(2) The variant of the theory of perturbations used here allows us to solve the problem also

in the case where the condition aB � �B is satisfied only for the one particle of the pair,
while the Bohr radius for the other particle can be of order �B. Such a situation may occur
if the effective masses of the carriers differ considerably from each other (m1 � m2);
see [15].
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Figure 1. The dependence of the energy of the electron pair on its momentum.

Returning to the analysis of the result (16), at the first step we consider the case where
the interlayer distance is equal to zero. In this case the analytical expression for the energy of
the pair as a function of the momentum P can be found. At d = 0 the integral in the r.h.s. of
equation (16) is calculated analytically. The result is

�E01(p) = e2

ε0�B

√
π

2

1

2

[(
1 − p2

2

)
I0

(
p2

4

)
− p2

2
I1

(
p2

4

)]
e−p2/4, (18)

where p is the modulus of the dimensionless momentum p = P�B/h̄ of the pair, I0(x) and
I1(x) are the modified Bessel functions of zeroth and first order, respectively. Using the
asymptotic expressions for I0(x) and I1(x) one can find from equation (18) the dependence
�E01(p) ≡ ε(p) at small and large p.

(1) At p � 1,

ε(p) ∼= E0 +
h̄2 p2

2M∗�2
B

, (19)

where the energy E0 and the effective mass of the pair M∗ read as

E0 = e2

2ε0�B

√
π

2
and M∗ =

(
2

π

)1/2 4ε0h̄2

e2�B
. (20)

One should note that in the approximation used the effective mass M∗ is determined only
by the interaction between electrons. The bare masses m1 and m2 do not enter into the
expression for M∗. The bare masses determine only the Larmor frequencies ω1 and ω2.

(2) At p � 1,

ε(p) 
 4√
2π

E0

p
. (21)

As follows from equations (20) and (21), the energy of the electron pair as a function of the
momentum p increases at small momenta and decreases at large p. Numerical estimates
show that the function ε(p) reaches its maximum εm = 1.148E0 at p = pm = 1.194. The
dependence ε(p) is shown in figure 1. At d �= 0 the integral in equation (16) cannot be
evaluated analytically. Nevertheless, one can show (see the appendix) that the maximum
of the function �E01(p) survives at d �= 0, but the energy barrier separating the metastable
bound state of the pair from the ground state becomes smaller with increase of the ratio
d/�B. At d/�B � 0.8 the energy barrier vanishes and the energy of the pair becomes a
monotonically decreasing function of p.
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To clarify the origin of the minimum and the maximum in the energy spectrum �E01(p) it
is instructive to present the expression (16) in terms of the wavefunction of the pair. Replacing
the factor e−|k|d/|k| in equation (16) with the integral

e−|k|d

|k| = 1

2π

∫
e−ik·r

√
r2 + d2

d2r (22)

and integrating the result over k one can rewrite the energy (16) in the form

�E01(p) = e2

ε0

∫ |
(r − rp)|2√
r2 + d2

d2r, (23)

where

rp = B × p
�B

B
, (24)

|
(r)|2 ≡
∫

d2k

(2π)2
e−ik·re−|k|2�2

B/2

(
1 − |k|2�2

B

2

)
= 1

4π
exp

(
− r2

2�2
B

)
r2

�4
B

. (25)

Equation (23) yields the correction to the energy of the electron pair due to the Coulomb
interaction between electrons computed in the first order of the perturbation theory. Since the
factor e2/ε0

√
r2 + d2 is the energy of the Coulomb interaction between the electrons in the

pair, the quantity |
(r − rp)|2 is the squared modulus of the wavefunction of the pair with the
momentum p (and, therefore, such notation is used for the quantity (25)).

The wavefunction of the pair can be found as a superposition of the products of the one-
particle electron wavefunctions 
0

1 in layer 1 (on the zero Landau level) and the wavefunctions

1

2 in layer 2 (on the first Landau level). In the Landau gauge A = (0, Bx, 0),


0
1 (k1) = C1(k1)eik1 y1 exp

[
− (x1 + k1�

2
B)2

2�2
B

]
(26)


1
2 (k2) = C2(k2)eik2 y2 exp

[
− (x2 − k2�

2
B)2

2�2
B

]
x2 − k2�

2
B

�B
. (27)

One should note that the terms k1�
2
B and k2�

2
B in the exponents in equations (26) and (27) have

opposite signs. This is connected with the magnetic fields in layers 1 and 2 being antiparallel
to each other. The functions (26) and (27) coincide with the wavefunctions of an electron and
a hole in the electron–hole pair in a uniform magnetic field.

Let us assume that the coefficients C1 and C2 do not depend on k1 and k2. Then the
wavefunction of the electron pair with the total momentum p, directed along the y axis, has
the form


(r − rp) = C
∑

q


0
1

(
p

2�B
+ q

)

1

2

(
p

2�B
− q

)
. (28)

Computing the sum over q in equation (28) and normalizing the function 
(r − rp) to unity,
we find


(r − rp) = 1√
π

1

�B
exp

(
ip(y1 + y2)

2�B

)
exp

(
−i

(x1 + x2)(y1 − y2)

2�2
B

)

× exp

[
− (x1 − x2 + p�B)2 + (y1 − y2)

2

4�2
B

](
x1 − x2 + p�B

2�B
− i

y1 − y2

2�B

)
.

(29)

The squared modulus of the function (29) coincides with expression (25). This justifies the
assumption that the coefficients C1 and C2 do not depend on k1 and k2. One can easily verify
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that the function (29) is the eigenfunction of the momentum operator (14), taken in the Landau
gauge. Therefore the energy of the pair (23) is a function of the conservative quantity p.

The dependence �E01(p) at d � �B can be written as

�E01(p) = e2

ε0

∫ |
(r)|2
|r + rp| d2r. (30)

One can easily see that the function |
(r)|2 has a maximum at r = √
2�B. At the same time,

the maximum of the function 1/|r + rp| is reached at r = rp. At small momenta (p�B/h̄ � 1),
these two maxima become closer to each other with increase of p. In the opposite case of large
momenta (p�B/h̄ � 1), the two maxima become more separated with increasing momenta. As
a result, at small p the overlapping of two functions under integral (30) increases with increase
of p and at such momenta E01 is an increasing function of p. At large p the overlapping
decreases and E01 turns into a decreasing function of p. The key point is the nonmonotonic
behaviour of the function |
(r)|2. Note that in the case of two electrons belonging to the zero
Landau level, the function |
(r)|2 ∝ exp(−r2/2�2

B) is a monotonic function of r and �E00(p)

is also a monotonic (decreasing) function of the momentum of the pair p.

3. Discussion

Let us discuss the consequences of the existence of the interval of p where the energy of the
pair increases with increase of its momentum. The mean value of the squared distance between
the electrons in the pair is

〈r2〉 =
∫

r2|
(r − rp)|2 d2r = �2
B(4 + p2). (31)

It follows from equation (31) that at any momentum p the pair has a finite size. Therefore, in
antiparallel magnetic fields the momentum conservation results in the formation of a bound
state of two electrons at any p. But such a state can be completely unstable. The reason is the
interaction of electrons with the lattice that always takes place in real physical systems. Due
to this interaction the pair can emit an acoustic or optical phonon and reduce its energy. In the
interval of p where dE01(p)/d p < 0, the emission of a phonon is a process without a threshold.
The emission is accompanied with increase of the momentum of the pair and the average
distance between electrons becomes larger. As a result, the distance between the electrons
increases infinitely after many emissions and the bound state disappears. Another situation
occurs in the region of p where dE01(p)/d p > 0. In this case, as follows from the energy and
momentum conservation laws, the emission of a phonon may take place under the condition
that the momentum of the pair p is higher than a certain critical value pc. Therefore, the pairs
with the momenta p < pc do not decay at all (if one neglects exponentially small underbarrier
tunnelling processes). The pairs with p > pc can emit phonons, but such processes lower
the energy and momentum of the pair and the average distance between electrons after such
events is decreased. Thus, the bound state of the pairs is stable with respect to the emission of
phonons if the momenta of the pair satisfy the condition dE01(p)/d p > 0,

The bound electron pairs are bosons and, therefore, in the system of such pairs one can
expect a transition into a superfluid state if the density of the pair is quite large. Since the pairs
are charged, this state should be a superconductive one. Strictly speaking, the problem of a
transition of the electron pairs into the superfluid state in the system studied requires further
analysis. Since the bound state of the pairs does not correspond to the true minimum of the
energy, thermodynamic arguments cannot be used to establish the conditions for the existence
of a superfluid state. To clarify this question, the probability of a transition from the state with
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a given number of pairs with zero or small momenta should be found. We expect that, due
to the presence of the barrier to pair decoupling in the two-particle problem, a barrier to the
destruction of the coherent state will exist in the many-particle problem as well. Therefore, at
temperature lower than the value of the barrier, the lifetime of the coherent state will be long.

In conclusion, we discussed briefly the question of the possibility of realizing the magnetic
field configuration required. This question is not so simple from the experimental point of view.
In fact, the fields should be of the order of 1–10 T. But we think this obstacle can be overcome.
We propose two possible ways of solving this problem. First, the required (antiparallel)
configuration of the magnetic fields can be realized using magnetized stripes of magnetically
hard materials (such as Dy) deposited on the bilayer structure. In [19] such a method was used
for designing periodic magnetic fields with Bmax = 1 T with the aim of studying the conducting
properties of a two-dimensional electron gas in such fields. Another possible way to create an
antiparallel magnetic field configuration is based on using antiferromagnetic systems in which
the spins in each layer are ferromagnetically ordered while they are directed antiparallel in
adjacent layers. For example, such properties are demonstrated by the layered manganites
(LaSr)n+1MnnO3n+1, compounds which are being widely studied now (see, for instance, the
review [20]).
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Appendix A. The dependence of the energy of the pair on its momentum at d �= 0

At d �= 0 equation (16) can be reduced to

�E01(p) = e2

ε0�B

∫ ∞

0
e−xd/�B−x2/2(1 − x2/2)J0(x p) dx . (A.1)

One can see that the function �E01(p) depends on the dimensionless parameter δ = d/�B. At
small p the Bessel function under the integral can be replaced by the series

J0(x p) = 1 − x2 p2

4
+ · · · . (A.2)

Then

�E01(p) = �E01(0) +
Ap2

2
+ o(p2). (A.3)

It follows from equation (A.3) that there is an extremum of the function �E01(p) at p = 0
(∂�E01(p)/∂p = 0): a minimum at A > 0 or a maximum at A < 0. The exact expression
for A can be presented in terms of the parabolic cylinder function Dν(z) [21]:

A(δ) = e2

2ε0�B

∫ ∞

0
dx x2

(
x2

2
− 1

)
exp

(
−δx − x2

2

)

= e2

ε0�B
exp

(
δ2

4

)
[6D−5(δ) − D−3(δ)]. (A.4)

Using the recurrence relation Dp+1(0)+ pDp−1(0) = 0 and the value of D−1(0) = √
π/2 [22]

we find that D−3(0) = √
π/8 and D−5(0) = √

π/128. Therefore, the quantity

A(0) = e2

4ε0�B

√
π

2
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is positive. This means that at d = 0 the function �E01(0) has a minimum at p = 0, in
accordance with the result (19).

The condition A(δc) = 0, which is equivalent to

6D−5(δc) − D−3(δc) = 0 (A.5)

determines the critical value δc: at δ > δc the energy barrier disappears and the bound state
becomes unstable. For physical reasons one can assume that δc � 1. Using the asymptotic
expression for Dν(z) [22],

Dν(z) 
 1√
2

exp

[
ν

2
ln(−ν) − ν

2
− √−νx

]
, (A.6)

valid for |ν| � z, the condition (A.5) can be reduced to the form

exp[−δc(
√

5 − √
3)] = 5

6e

(
5

3

)3/2

.

This yields

δc =
1 + ln

(
18
25

√
3
5

)
√

5 − √
3

≈ 0.83. (A.7)

Note that the answer (A.7), found analytically, is very close to the value of δc(≈0.78) obtained
by direct numerical evaluation of the integral (A.1).

Thus, as follows from our analysis, the metastable bound state of electrons in the systems
considered can be realized at the interlayer distances d < �Bδc.
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